Analysis and Interpretation: Descriptive Statistics

Eduardo Figueiredo

http://www.dcc.ufmg.br/~figueiredo

Analysis and Operation

- After collecting data in the operation phase, we want to draw conclusions
 - The analysis and operation phase aims to interpret the collected experimental data
- This phase has three main steps
 - **Descriptive statistics**
 - Data set reduction
 - Hypothesis testing

Analysis and Operation Overview

Descriptive Statistics

- Descriptive statistics are used to describe and graphically present interesting aspects of the data set
 - They allow identifying abnormal or false data points (called outliers)
- The scale of measurements restricts the type of statistics

Statistics for each Scale

	Central Tendency	Dispersion	Dependency
Nominal	Mode	Frequency	
Ordinal	Median, Percentile	Interval of Variation	Spearman, Kendall
Interval	Mean, Variance, Range	Standard Deviation	Pearson
Ratio	Geometric mean	Coefficient of variation	

Measures of Central Tendency

These measures indicate the "middle" of the data set

Common measures

- o Mean
- o Median
- o Percentile
- Mode

Mean and Median

- Mean (x̄)
 - It is meaningful for interval and ratio scales

• Mean
$$(1, 1, 2, 4) = 2.0$$

Median (x̃)

- The same number of samples are higher and lower than the median (middle value)
- Well defined when n is odd (ordinal scale)

• Median
$$(1, 1, 2, 4) = 1.5$$

valid only for interval and ratio scales

Percentile and Mode

Percentile

- Median is a special case of percentile (50%)
- Other common percentiles: 25% and 75%

Mode

- It represents the most common value
- Valid for all scale types
- Mode(1, 1, 2, 4) = 1

Measures of Dispersion

They measure the variation from the central tendency

- Common measures
 - Variance
 - Standard Deviation
 - Range

Variance and Standard Deviation

Variance (s²)

 It is the mean of the square distance from the sample mean

Variance =
$$\frac{1}{n-1} \sum (Xi - \overline{X})^2$$

- Standard Deviation (s)
 - It is the square root of the variance
 - It has the same unit of the sample data

Standard deviation =
$$\sqrt{\frac{1}{n-1}\sum (Xi - \overline{X})^2}$$

Range

Range

- It is the distance between the maximum and minimum data values
- Meaningful for interval and ratio scales

range =
$$x_{max} - x_{min}$$

• Range
$$(1, 1, 2, 4) = 4 - 1 = 3$$

Measures of Dependency

- When the data set consists of related samples in pairs (x_i, y_i), it is often interesting to analyze the dependency
- Common measures
 - Linear regression
 - Covariance
 - Correlation (Pearson, Spearman, Kendall)

Graphical Visualization

Graphical Visualization

- Graphical visualization is useful to analyze measures of central tendency, dispersion, and dependency
- Common charts
 - Scatter plot
 - Box plot
 - Histogram
 - Pie chart

Scatter Plot

 Scatter plot is useful for assessing dependencies between two variables
It also shows how spread or concentrated

Box Plot

Box plot is good for visualizing dispersion of sample data

Histogram

- Histogram is used to give you an overview of the distribution density
 - It often presents the frequency of each value
 - It is useful to test normal distribution

Pie Chart

 Pie chart shows the relative frequency of the data values (in percentage)

 It is useful to represent predominant values in the nominal scale

Bibliography

C. Wohlin et al. Experimentation in Software Engineering, Springer. 2012.

 Chapter 10 – Analysis and Interpretation (Section 10.1 Descriptive Statistics)